Blog di Marco Castellani

Giorno: 18 Aprile 2011

Le prime galassie? Più vecchie di quanto si pensava!

Utilizzando il “potere di amplificazione” di una lente gravitazionale cosmica, gli astronomi hanno scoperto una galassia distante, le cui stelle risultano esser nate “inaspettatamente presto” nella storia del cosmo. Il risultato è importante perché getta nuova luce sia sui meccanismi di formazione delle galassie, sia sulle prime fasi dell’evoluzione dell’universo stesso.

Johan Richard, a capo della ricerca appena pubblicata su Montly Notices of Royal Astronomical  Society, ha affermato “Abbiamo appena scoperto una galassia lontana che ha iniziato a formare stelle appena 200 milioni di anni dopo il Big Bang. Questo mette alla prova le teorie su quanto rapidamente si siano formate ed evolute le galassie, nei primi anni dell’universo. Ciò potrebbe anche aiutare a risolvere il mistero di come sia stata dissolta la ‘nebbia di idrogeno’ che riempiva l’universo primordiale.”

La ricerca è stata condotta tramite osservazioni a diversi telescopi, incluso il Telescopio Spaziale Hubble, lo Spitzer (entrambi nello spazio) e il W.M.Keck Observatory alle Hawai.

La galassia distanta è visibile attraverso un ammasso di galassie noto con il nome di Abell 383, la cui gravità influenza il percorso dei raggi di luce che lo attraversano, un pò come fa una comune lente ottica nel caso della luce solare (anche se ovviamente il principio è diverso). Di fatto, l’allineamento “fortunato” tra la galassia, l’ammasso di galassie e la Terra si traduce in una amplificazione della luce che proviene dalla galassia lontana, il che permette agli astronomi di condurre osservazioni dettagliate. Va detto che senza l’ausilio di questa lente gravitazionale, infatti, la galassia sarebbe sicuramente risultata troppo debole per poter essere osservata, nemmeno utilizzando i migliori telescopi oggi a nostra disposizione. Potremmo dire dunque che, in questo caso, è  la natura stessa che ci viene in aiuto!

Tramite analisi ottiche e spettroscopiche, è stato determinato lo “spostamento verso il rosso” (redshift cosmologico) della galassia, pari a 6,027. Questo vuol dire che stiamo vedendo la galassia come era quando l’universo era vecchio appena 950 milioni di anni (l’età oggi stimata dell’universo, come sappiamo, è di 13,7 miliardi di anni, dunque era davvero molto piccolo…).

Un redshift così rilevante, comunque, non fa di questa galassia quella più lontana mai osservata: ne sono state trovare diverse con valori di redshift circa 8, e una addirittura con reshift intorno a 10! La peculiarità di questa galassia infatti non risiede nella sua distanza, ma nel fatto di presentare caratteristiche drammaticamente diverse da altre galassie distanti che si siano già osservate, le quali generalmente brillano gagliarde della luce di stelle esclusivamente giovani.

Benché le indicazioni di redshift, come abbiamo menzionato, piazzino la galassia molto presto nell’evoluzione cosmica, tuttavia i dati di Spitzer indicano come la galassia sia fatta di stelle sorprendentemente vecchie e relativamente poco luminose (come spiega Elichi Egami, che ha preso parte alla ricerca). Vi sono segnali di stelle vecchie addirittura 750 milioni di anni, il che porta l’epoca della prima formazione stellare indietro fino a circa 200 milioni di anni dopo il Big Bang, molto prima di quanto pensavamo!

L’ammasso di galassie Abell 383… più “potente” del miglior telescopio a nostra disposizione! (Crediti: NASA, ESA, J. Richard (CRAL) and J.-P. Kneib (LAM). Acknowledgement: Marc Postman (STScI))

La scoperta presenta implicazioni che vanno molto al di là del periodo di prima formazione delle galassie, e può aiutare a capire come ha fatto l’universo a diventare trasparente alla radiazione ultravioletta nei primi miliardi di vita dopo il Big Bang. All’epoca, una nebbia diffusa di idrogeno neutro bloccava la diffusione della luce ultravioletta. Deve essere allora intervenuta una qualche sorgente di ionizzazione per il gas neutro, che “spazzasse” la nebbia e lo rendesse trasparente ai raggi ultravioletti, come lo è ora. Il processo è noto con il nome di “reionizzazione”

In effetti gli astronomi erano persuasi che la radiazione che ha fatto da “motore” alla rionizzazione dovesse aver avuto origine dalle galassie. Però fino ad ora, nessun candidato era stato trovato per confermare questa tesi. La presente scoperta potrebbe aiutare a sciogliere questo perdurante enigma.

Se infatti le galassie lontane, con stelle già “mature”, fossero molte più di quanto prima ipotizzato (come la recente scoperta porta a credere), ecco che la “radiazione mancante” per la reionizzazione potrebbe finalmente trovare una sua origine, del tutto plausibile.

Una ultima osservazione: fino ad ora dobbiamo affidarci alle (potenti) “lenti cosmiche” per effettuare simili scoperte. Questo vuol dire che possiamo sfruttare solo alcune configurazioni geometriche particolari (come in questo caso, l’allinemaneto Terra – ammasso di galassie – galassia lontana). Con il previsto avvento del James Webb Telescope, nella prossima decade (speriamo), potremmo essere nella posizione ideale per risolvere questo mistero, una volta per tutte (e aprirne, come è sempre per la scienza, mille  e mille altri….)

SpaceTelescope Press Release

 

Loading

Sole sporco

Cliccare sul video:  NASA SDO – Traveling Sunspots (Feb 7 – 20, 2011) . Cortesia: NASA SDO.

 

In collaborazione con Umberto Genovese

Questo è un articolo scritto a quattro mani, da me e Umberto Genovese. Dopo la proficua collaborazione del pesce d’aprile (si veda il post https://www.stardust.blog/2011/04/3459/) abbiamo deciso di unire le nostre conoscenze per questo post e per altri interessanti articoli che abbiamo in mente per offrire ai nostri lettori solo il meglio del meglio. Spero che lo apprezzerete.

Le prime note delle macchie solari si devono – come spesso è accaduto nell’antichità – agli acuti osservatori cinesi che osservavano ad occhio nudo già nei secoli prima di Cristo, probabilmente sfruttando condizioni particolarmente favorevoli che si possono avere solo all’alba o al tramonto.

Anche se diverse macchie solari particolarmente grandi furono notate diverse volte nella storia [1]. Una fu notata nel marzo dell’anno 807 da un monaco benedettino che la scambiò per il transito del pianeta Mercurio e un’altra fu vista alla morte di Carlo Magno nell’813 d.C.

Le macchie solari osservate il 17 aprile 2011 alle 5:29 del tempo universale. Cortesia: Umberto Genovese.

 

In Europa le prime osservazioni documentate risalgono intorno al primo decennio del XVII secolo, con varie dispute inutili sulla scoperta tra Galileo Galilei e altri osservatori europei. Prima di Galileo le macchie solari venivano spiegate come ombre del transito di pianeti sul Sole, nel Vecchio Continente parlare di macchie sul Sole era considerata opera di blasfemia che andava contro i dettami della Chiesa e contro gli insegnamenti dei padri della cosmologia ufficiale Tolomeo e Aristotele. Fu infatti l’astronomo pisano che nel 1612 riuscì a dare una spiegazione corretta al fenomeno indicandole come macchie sulla superficie del Sole e misurando il periodo di rotazione della stella, appena in tempo che questa cadesse nel primo dei periodi di quiescenza documentati dell’era moderna: il minimo di Maunder (1645-1715). Se la scoperta del cannocchiale per usi astronomici avesse tardato di soli cinquanta anni, probabilmente una delle scoperte astrofisiche più importanti dell’era moderna sarebbe stata rimandata di cento.

Fu infatti nel XIX secolo  che l’attenzione degli astronomi per il Sole permise importanti e significative scoperte: la spettroscopia della luce solare permise la scoperta della parte termica del continuum elettromagnetico, come il continuo monitoraggio delle macchie solari permise la scoperta del ciclo undecennale del Sole ad opera dell’astronomo tedesco Heinrich Schwabe e della codificazione del metodo di conteggio di queste da parte dell’astronomo svizzero Rudolf Wolf che completò le ricerche di Schwabe.

Nel 1769 l’astronomo scozzese Alexander Wilson scoprì che le macchie solari sono depressioni sulla superficie del Sole che ora sappiamo essere profonde anche 1000 chilometri anche se osservazioni e ricerche  più recenti spiegano tali depressioni   con la maggiore trasparenza del materiale posto rispetto alla fotosfera [2].
Dai Lavori di Schwabe  e di Wolf si arrivò nel 1861 ai lavori di Carrington e Spörer che scoprirono la relazione che lega lo spostamento della latitudine di apparizione sulla superficie solare delle macchie solari durante un ciclo, aprendo così la strada all’attuale modello interpretativo del fenomeno.

Le macchie solari possono apparire sulla fotosfera come piccoli “pori” rotondi di 2″- 4″ di diametro (1500-300 km) o come gruppi imponenti di dimensioni angolari fino a 5′-6′ (200 000-250 000 km) tali quindi da poter essere percepite ad occhio nudo.

Diagramma a farfalla di Spörer. Fonte Wikipedia: http://it.wikipedia.org/wiki/File:800px-Sunspot_butterfly_with_graph.gif

 

Le macchie solari si formano di solito da minuscoli pori che tendono a svilupparsi fino a formare delle vere e proprie macchie composte da una regione centrale, chiamata ombra, che appare nera sullo sfondo luminoso della fotosfera. In realtà, la regione centrale della macchia è molto luminosa anche se meno brillante dello sfondo su cui si osserva perchè la temperatura è inferiore, dell’ordine dei 4000 K, rispetto ai 5700 K del resto della fotosfera. L’ombra è circondata da una zona detta di penombra e, qualche volta, attorno alla penombra appare come un anello brillante, 2-3 volte più luminoso della fotosfera.

Sul Sole possiamo osservare macchie isolate, anche di grandi dimensioni, ma per lo più esse tendono a raccogliersi a gruppi, che comprendono anche decine di macchie grandi e piccole associate fra loro che tendono a mostrare due centri di addensamento, uno che precede e l’altro che lo segue nel verso della rotazione solare. Spesso si formano attorno altre macchie, che eventualmente si fondono insieme, fino a formare grossi gruppi, con penombra comune, con punti luminosi che si estendono da una macchia all’altra. I gruppi di macchie tendono ad assumere formale ovale, con gli assi maggiori leggermente inclinati rispetto alla direzione Est-Ovest in modo che la macchia di testa sia più vicina all’equatore solare di quella di coda. L’angolo di inclinazione dipende dalla latitudine e può raggiungere i 20° a latitudini di 30-35 gradi eliocentrici.

Lo sviluppo di un gruppo di macchie, partendo dalla macchia di origine, può durare per un tempo superiore all’intera rotazione solare. Il gruppo, che partecipa alla rotazione, scompare quindi al lembo ovest, per riapparire, dopo 13 giorni e mezzo al lembo est. Nel momento di massimo sviluppo un gruppo di macchie può avere diametro fino a 100 000 km o più.

Raggiunto il massimo, fra il 12° e il 16° giorno, il gruppo di macchie comincia a dissolversi. Lentamente le macchie scompaiono, finchè, dopo un periodo di 40-50 giorni, restano soltanto una o due minuscole macchioline (una delle quali è la macchia di testa), da cui poi, col passare del tempo, si origina un nuovo gruppo.

Le macchie solari sono sedi di intensi moti convettivi, con struttura vorticosa. In altri termini, gas solari salgono a spirale dall’interno della macchia, con velocità di alcuni chilometri al secondo, espandendosi e quindi raffreddandosi. La diminuzione di temperatura dei gas comporta una minore luminosità della macchia.

Macchie solari durante l’eclissi di Sole del 4/1/2011 Credit: Il Poliedrico.

 

La più grande macchia solare osservata si ebbe nel 1858 con un diametro di 200 000 chilometri, lunga cioè 18 volte il diametro della Terra. Una macchia di diametro superiore a 40 000 chilometri può essere osservata a occhio nudo (ovviamente con le adeguate protezioni contro l’abbagliante luce solare che potrebbe danneggiare irreparabilmente l’occhio).

Molti grandi scienziati e astronomi come Galileo e Newton ebbero la vista offesa per aver avuto la temerarietà di osservare direttamente il Sole, Galileo finì la sua vita ad Arcetri, Firenze, con il solo profumo del vino e privo dei colori… della sua terra, mentre Newton si costrinse a rimanere chiuso in una stanza buia per giorni, per recuperare la vista dalle immagini fantasma che studiava.

Le macchie si spostano di moto proprio, sulla superficie del Sole. In genere, in un gruppo, la macchia di testa tende a muoversi in avanti, nel verso della rotazione, e quella di coda all’indietro. Il gruppo quindi diverge e si allarga. Quando il moto divergente si interrompe, il gruppo di macchie si scioglie.
Le macchie solari sono zone di intensi campi magnetici. L’intensità del campo magnetico, che ha direzione ortogonale al piano su cui si proietta la macchia, può variare tra un minimo di 100 Gauss e un massimo di circa 4000 Gauss.

Ora  sappiamo che la vera natura delle macchie solari  è dovuta alla rotazione differenziale del Sole, più veloce all’equatore e più lenta ai poli, che provoca l’attorcigliamento localizzato di correnti convettive e del loro campo magnetico. Questi tubi di plasma si isolano dal resto delle correnti convettive sottostanti la fotosfera e impediscono che il trasporto energetico generale li riscaldi, per questo sono più fredde.
Quando emergono in superficie, come viene mostrato dal filmato – che ricorda la polvere di cacao che emerge dalla schiuma di un cappuccino, si possono vedere gli archi di materia magnetizzata, i vortici magnetici del plasma talmente attorcigliati che alla fine si possono rompere liberando energia equivalente a migliaia di bombe nucleari: i magnifici brillamenti solari.

[1] Una fu notata nel marzo dell’anno 807 da un monaco benedettino che la scambiò per il transito del pianeta Mercurio e un’altra fu vista alla morte di Carlo Magno nell’813 dC.

[2] The Wilson effect and Sunspot structure, Astrophysical Journal, vol. 142, p.773

Il numero di Wolf: Il numero di Wolf è una grandezza che misura il numero di macchie solari e dei gruppi di macchie solari presenti sulla superficie del Sole. Il relativo numero di macchie solari R è calcolata utilizzando la formula (raccolti come un indice giornaliero di attività delle macchie solari):

R = k(10g + s)

dove

s è il numero di punti individuali,
g è il numero di gruppi di macchie solari
k è un fattore che varia con la posizione e la strumentazione (anche conosciuto come il fattore osservatorio o la riduzione del personale coefficiente K ).

Pubblicato su Il Poliedrico di Umberto Genovese: http://ilpoliedrico.altervista.org/2011/04/sole-sporco.html e su TuttiDentro:  http://tuttidentro.wordpress.com/2011/04/18/8264/ .

Sabrina e Umberto

Loading

Shuttle: un percorso indietro nel tempo

Un’insolita quasi surrealistica immagine dello Shuttle Challenger ripreso dall’altro mentre viene spostato verso la rampa di lancio 39A (visibile nella parte più alta dell’immagine) prima della sua partenza. Il percorso dal Vehicle Assembly Building, edificio dove lo Shuttle viene assemblato, fino alla rampa di lancio del complesso 39, dura circa sei ore.

Lo Shuttle Challenger sfortunatamente scoppiò in volo durante la fase di decollo il 28 gennaio 1986 e tutti i sette astronauti a bordo perirono in pochi minuti.

 

Lo Space Shuttle Atlantis sopra lo Shuttle Carrier Aircraft (SCA) ritorna al Kennedy Space Center dopo dieci mesi di risistemazione.

 

Lo Space Shuttle Endeavour scortato da 12 F/A-18F Super Hornets al suo arrivo al Kennedy Space Center, in Florida.

 

Lo Space Shuttle Atlantis visto dalla Stazione Spaziale Internazionale (ISS).

Cortesia NASA.

Sabrina

Loading

Powered by WordPress & Theme by Anders Norén