Blog di Marco Castellani

Tag: buchi neri supermassicci

Quarantacinquemila galassie

Sembra impossibile, ma qui sotto ci sono circa quarantacinquemila galassie. L’immagine è stata acquisita con il Telescopio Spaziale James Webb e mostra una regione nota come GOODS-South, già ampiamente investigata da Hubble.

Il campo profondo GOODS-South.
Crediti: NASA, ESA, CSA, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Marcia Rieke (University of Arizona), Daniel Eisenstein (CfA). Image processing: Alyssa Pagan (STScI)

Ed è assai importante per gli astronomi. Perché tra le questioni più spinose c’è ne è sempre una in particolare: come si sono formate le prime stelle e le prime galassie? Uno dei programmi più ambiziosi del James Webb, chiamato JADES dedica ben 32 giorni di tempo telescopio ad individuare e caratterizzare le galassie deboli e lontane. Proprio per riuscire a capirci qualcosa (di più).

Loading

Una lingua inaudita

Le galassie dell’ammasso della Vergine sono diffuse per ben quattro gradi in questa ampia immagine. Distante da noi circa cinquanta milioni di anni luce, l’Ammasso della Vergine costituisce il più vicino ammasso di galassie, oltre il nostro Gruppo Locale.

Qui si vedono bene le galassie ellittiche più luminose tra le tante dell’ammasso, ovvero M87 in basso nella zona centrale, M84 ed M86 (dall’alto in basso) più a sinistra.

Loading

Un quasar primordiale

A cosa assomigliavano i primi quasar? Quelli più vicini, sappiamo che coinvolgono buchi neri di grande massa al centro di galassie attive. Gas e polveri che cadono dentro il quasar rifulgono, di uno splendore tale che a volte l’intera galassia che ospita questo spettacolo passa in secondo piano.

Però i quasar che si sono formati nei primi miliardi di anni dell’universo sono ben più misteriosi, ancora. Tutti da capire.

Così potrebbe sembrare un “antico quasar”. Un testimone prezioso dell’infanzia del cosmo…
Crediti & LicenzaESOM. Kornmesser

Questa è una ricostruzione artistica, basata sui dati che abbiamo, di come potrebbe essere stato un quasar nell’universo ancora bambino. Centrato su un buco nero di grande massa, circondato da strati di gas e da un disco di accrescimento, caratterizzato da un forte fascio di emissione, perpendicolare al suo piano di rotazione.

Loading

Cadere all’interno o sfrecciare fuori?

Questa splendida immagine rappresenta la polarizzazione delle onde radio intorno al buco nero al centro della galassia ellittica M87. La polarizzazione (nome complesso per indicare un orientamento ordinato delle onde, in sostanza) è prodotta dai potenti campi magnetici che circondano il buco nero supermassivo. Le onde radio sono state rilevate dall’Event Horizon Telescope (EHT per gli amici) che ha combinato dei dati da alcuni radiotelescopi distribuiti in tutto il mondo. La struttura della polarizzazione, mostrata attraverso linee di flusso generate al computer, è stata sovrapposta alla famosa prima immagine del buco nero che ha costituito certamente l’evento astronomico del 2019. L’immagine è molto intrigante, quasi ipnotica. Anche, di indubbia eleganza direi.

Il buco nero centrale di M87, in luce polarizzata. Crediti: Event Horizon Telescope CollaborationText: Jayanne English (U. Manitoba)

Il campo magnetico mappato in tre dimensioni ha certamente una struttura complessa che volentieri lascio agli studiosi. Dico solo questo, che analisi preliminari indicano che parte del campo magnetico ruoti insieme al buco nero insieme con la materia in accrescimento, come del resto ci si aspetta che faccia. Ma non vale per tutti: un’altra componente sembra orientarsi secondo un asse verticale, in modo da resistere alla caduta nel buco nero per invece essere lanciata lontano attraverso potenti getti di materia, che sono poi un’altra nota caratteristica ben nota di M87.

Non sappiamo cosa distingue la materia che cade all’interno del buco nero da quella che viene sparata verso il cosmo infinito, a grande velocità. Sappiamo però che noi abbiamo una scelta, se cadere in noi stessi o aprirci all’infinito. In ogni granello elementare del tempo, possiamo di nuovo scegliere.

Assecondare il movimento depressivo o quello espansivo (tipico di un mondo fantastico), la scelta è nostra. Sceglieremo di sfrecciare nello spazio, lasciandoci dietro (dopo averli riconosciuti e anche ringraziati, per la parte di crescita che hanno portato) i buchi neri delle nostre storie?

Loading

Chi fa le onde gravitazionali?

Lo spazio cosmico non si riposa mai. Accadono cose continuamente, cose di cui stupirsi: anche nelle regioni più lontane. Cosa sta accadendo – ad esempio – al centro della galassia attiva chiamata 3C75? Non è proprio dietro l’angolo, perché la distanza stimata si aggira intorno ai 300 milioni di anni luce, ma è parecchio interessante, comunque

Crediti: X-Ray: NASA/CXC/D. Hudson, T. Reiprich et al. (AIfA); Radio: NRAO/VLA/ NRL

L’immagine è una combinazione di dati in banda X e radio, e mostra due buchi neri di grande massa che “danzano” all’interno di 3C 75, ad una distanza relativa di circa 25000 anni luce. Sono circondati da gas caldo (ma proprio caldo, parliamo di milioni di gradi) e sputano fuori getti di particelle relativistiche, come se piovesse (o anche molto di più).

Tutto questo avviene proprio al centro dell’ammasso di galassie chiamato Abell 400. Gli astronomi ritengono che i due enormi buchi neri continueranno il loro paziente corteggiamento cosmico ancora per alcuni milioni di anni, per poi finalmente fondersi insieme, a formare un unico buco nero di massa veramente enorme.

Negli stadi finali della danza – come sappiamo – il sistema diventerà una potente sorgente di onde gravitazionali, sulla scorta di quanto abbiamo avuto modo di registrare, negli ultimi tempi, per configurazioni simili.

Dunque stiamo osservando gli attori di un gioco cosmico che ha contribuito non poco ad aprirci gli occhi su un nuovo modo di vedere l’universo. E probabilmente, anche di pensarlo.

Imparando, da questo, che c’è un campo ancora vastissimo da esplorare, da capire. E soprattutto, che le sorprese non sono mai finite.

Loading

Osservate per la prima volta le onde gravitazionali con LIGO

A_long_time_agodi Umberto Genovese e Sabrina Masiero

… c’era una coppia di buchi neri, uno di circa 36 volte la massa del Sole mentre l’altro era un po’ più piccolo, di sole 29 masse solari. Questi due pesantissimi oggetti, attratti l’uno dall’altro in una mortale danza a spirale hanno finito per fondersi insieme, come una coppia di ballerini sul ghiaccio che si abbraccia in un vorticoso balletto. Il risultato però è un po’ diverso: qui ne è uscito un oggetto un po’ più piccolo della semplice somma algebrica delle masse: 62 masse solari soltanto.

Il resto è energia dispersa, non molta per la verità date le masse in gioco, pressappoco come quanta energia potrebbe emettere il Sole nell’arco di tutta la sua esistenza. Solo che questa è stata rilasciata in un singolo istante come “onde gravitazionali“.

Ma cos’è un’onda gravitazionale?

spacetime-02

La visione dello spazio che da sempre conosciamo è composta da tre uniche dimensioni, larghezza, altezza e profondità; x, y e z, se preferite. Il tempo, un fenomeno comunque misterioso, fino agli inizi del XX secolo era considerato a sé. Una visione – poi confermata dagli esperimenti di ogni tipo – fornitaci dalla Relatività Generale è che il tempo è in realtà una  dimensione anch’essa del tessuto dello spazio; una quarta dimensione. insieme alle altre tre [1].

Fino alla Relatività Generale di Einstein si era convinti che una medesima forza, la gravità, fosse responsabile sia della caduta della celebre mela apocrifa di Newton, che quella di costringere la Luna nella sua orbita attorno alla Terra e i pianeti nelle loro orbite attorno al Sole. Nella nuova interpretazione relativistica questa forza è invece vista come una manifestazione della deformazione di  uno spazio a quattro dimensioni, lo spazio-tempo, causata dalla massa degli oggetti. Così quando la mela cade, nella Meccanica Classica (essa è comunque ancora valida, cambia solo l’interpretazione dei fenomeni) la gravità esercitata dalla Terra attrae la mela verso di essa mentre allo stesso modo – e praticamente impercettibile – la Terra si muove verso la mela, nella Meccanica Relativistica è la mela che cade verso il centro di massa del pianeta esattamente come una bilia che rotola lungo un pendio e la Terra cade verso il centro di massa della mela nella stessa misura prevista dai calcoli newtoniani.

La conseguenza più diretta di questa nuova visione dello spazio-tempo unificato, è che esso è, per usare una metafora comune alla nostra esperienza, elastico; ossia si può deformare, stirare e comprimere. E un qualsiasi oggetto dotato di massa, se accelerato, può increspare lo spazio-tempo. Una piccola difficoltà: queste increspature dello spazio-tempo, o onde gravitazionali, sono molto piccole e deboli – la gravità è di gran lunga la più debole tra le forze fondamentali della natura –  tant’è che finora la sensibilità strumentale era troppo bassa per rivelarle.

Se volessimo cercare un’analogia con l’esperienza comune, potremmo immaginare lo spazio quadrimensionale come la superficie di un laghetto a due dimensioni, mentre la quarta dimensione, il tempo, è dato dall’altezza in cui si muovono le increspature dell’acqua. Qualora buttassimo un sassolino l’altezza della increspatura sarebbe piccola, ma man mano se scagliassimo pietre con maggior forza e sempre più grosse, le creste sarebbero sempre più alte. Però vedremmo anche che a distanze sempre più crescenti dall’impatto, queste onde scemerebbero di altezza e di energia, disperse dall’inerzia delle molecole d’acqua [2]; alcune potrebbero perdersi nel giro di pochi centimetri dall’evento che le ha  provocate, altre qualche metro e così via. Alcune, poche,  potrebbero giungere alla riva ed essere viste come una variazione di ampiezza nell’altezza del livello dell’acqua del laghetto e sarebbero quelle generate dagli eventi più potenti che avevamo prodotto in precedenza. Queste nello spazio quadrimensionale sono le onde gravitazionali e esse, siccome non coinvolgono mezzi dotati di una massa propria per trasmettersi come ad esempio il suono che è solo un movimento meccanico di onde trasmesse attraverso un mezzo materiale,  possono muoversi alla velocità più alta consentita dalla fisica relativistica c, detta anche velocità della luce nel vuoto.

Il grande protagonista: LIGO

E’ stato LIGO-Laser Interferometer Gravitational-Wave Observatory (in italiano, Osservatorio Interferometro laser per onde gravitazionali) il protagonista di questa straordinaria scoperta: uno strumento formato da due strumenti gemelli, uno a Livingston (Louisiana) e l’altro a Hanford (Washington), a 3000 chilometri di distanza dal primo.

Sono due gli interferometri, perché i dati possono venir confrontati e confermati: se entrambi gli strumenti rilevano lo stesso disturbo, allora è improbabile che sia legato ad un terremoto oppure a dei rumori di attività umana. Il primo segnale che conferma l’esistenza delle onde gravitazionali è stato rilevato dallo strumento americano Ligo il 14 settembre 2015 alle 10, 50 minuti 45 secondi (ora italiana), all’interno di una finestra di appena 10 millisecondi.

David Reitze del progetto LIGO ha annunciato al mondo la scoperta delle onde gravitazionali: “We have detected gravitational waves. We did it!”. Crediti: LIGO

Ed eccole qui, in questo diagramma: l’onda azzurra, captata da LIGO di Livingston e l’onda arancio, captata da LIGO di Hanford. Sono sovrapponibili, il che ci dice che sono la stessa onda captata dai due strumenti gemelli. E’ la firma della fusione dei due buchi neri supermassicci con la conseguente produzione di onde gravitazionali. In altre parole, questa è la firma del nuovo buco nero che si è formato dai due precedenti e, come è accennato anche più sopra, le tre masse solari che mancano dalla somma delle due masse che si sono fuse assieme dando vita al nuovo buco nero di 62 masse solari si sono convertite in onde gravitazionali.

Volete udire il suono di un’onda gravitazionale? Sì, certo che è possibile…. E’ straordinario pensare che queste onde rappresentano la fusione di due buchi neri in uno nuovo e proviene da distanze incredibilmente grandi, in un’epoca altrettanto remota: un miliardo e mezzo di anni  fa.

Le prove indirette

Il decadimento orbitale delle due stelle di neutroni PSR J0737-3039 (qui evidenziato dalle croci rosse) corrisponde esattamente con la previsione matematica sulla produzione di onde gravitazionali.

Il decadimento orbitale delle due stelle di neutroni PSR J0737-3039 (qui evidenziato dalle croci rosse) corrisponde esattamente con la previsione matematica sulla produzione di onde gravitazionali.

La prima prova indiretta dell’esistenza delle onde gravitazionali si ebbe però nel 1974. In quell’estate, usando il radio telescopio di Arecibo, Portorico, Russel Hulse e Joseph Taylor scoprirono una pulsar che generava un segnale periodico di 59 ms, denominata PSR 1913+16. In realtà, la periodicità non era stabile e il sistema manifestava cambiamenti [3] dell’ordine di 80 microsecondi al giorno, a volte dell’ordine di 8 microsecondi in 5 minuti.

Questi cambiamenti furono interpretati come dovuti al moto orbitale della pulsar [4] attorno ad una stella compagna, come previsto dalla Teoria della Relatività Generale. Di conseguenza, due pulsar, in rotazione reciproca una attorno all’altra, emettono onde gravitazionali, in perfetta linea con la Relatività Generale. Per questi calcoli e considerazioni, Hulse e Taylor ricevettero nel 1993 il Premio Nobel per la fisica.

La presenza di una qualsivoglia stella compagna introduce delle variazioni periodiche facilmente rivelabili nel segnale pulsato della stella che i radioastronomi sono in grado di misurare con precisione inferiore ai 100 microsecondi. Giusto per farsi un’idea, immaginiamo di prendere il Sole e di farlo diventare una pulsar. Dal suo segnale pulsato, gli astronomi sarebbero in grado di rilevare la presenza di tutti i pianeti che orbitano attorno a questo Sole-pulsar, grazie al fatto che ogni pianeta causa uno spostamento del centro di massa del Sole di un certo valore espresso in microsecondi. La Terra per esempio, che si muove lungo la sua orbita ellittica, produce uno spostamento del centro di massa del Sole di ben 1500 microsecondi! [5]


Per saperne di più:

La prima pulsar doppia” articolo di Andrea Possenti dell’INAF-Osservatorio Astronomico di Cagliari, pubblicato sul numero di Le Stelle, marzo 2004.

La notizia, pubblicata sul Physical Review Letters, porta i nomi di B. P. Abbott e della collaborazione scientifica di LIGO e VIRGO

Note 

[1]  In realtà le cose sono un attimino più complicate, la quarta dimensione si può percorrere solo in una sola direzione (freccia del tempo) rispetto alle altre tre. Mentre nella Meccanica Quantistica è perfettamente lecito che una particella possa muoversi a ritroso nel tempo (Principio di Invarianza t.

[2] Anche qui occorre sottolineare che la posizione reciproca delle molecole non cambia al passaggio di un’onda, esse si muovono tutte assieme; per provare basta immergere due galleggianti e vedere come essi si comportano al passaggio di un’onda.

[3] [1. In un 1 microsecondo (µs) la luce percorre esattamente 299,792458 metri nel vuoto (questo numero è usato per la definizione del metro).

[4] Una pulsar è una stella dotata di campo magnetico estremamente elevato, circa 2 x 1011 volte il campo magnetico della Terra, una stella formata di neutroni con un raggio di 10-20 chilometri e una massa dell’ordine delle 1,4 masse solari (un po’ come pensare di prendere il nostro Sole e comprimerlo fino a farlo diventare di 20 chilometri di diametro). Il suo asse di rotazione non coincide con l’asse del campo magnetico, e le particelle relativistiche cariche presenti nella magnetosfera emettono radiazione elettromagnetica di sincrotrone focalizzata in uno stretto cono lungo i poli magnetici. Questo segnale elettromagnetico, proveniente da grande distanza e modulato dalla radiazione della stella, viene ricevuto a Terra sotto forma di impulsi elettromagnetici che hanno una ben precisa periodicità. Il sistema si comporta come un gigantesco e compatto volano. Alcune pulsar emettono con una regolarità ben definita da essere utilizzate come orologio di riferimento.

[5] Una lettura interessante su questa prima scoperta la potete trovare sul sito dell’INAF-IAFS di Milano.

Loading

Tutti i colori di NGC1275

Un’immagine della galassia NGC 1275 ripresa dall’Hubble Space Telescope che rivela la presenza di strutture filamentose molto sottili nel gas che circonda la galassia. I filamenti di colore rosso sono composti di gas freddo sospesi dal campo magnetico, circondati da gas che raggiunge temperature dell’ordine dei 100 milioni di gradi Fahrenheit nel centro dell’ammasso di galassie del Perseo.

Image Credit: NASA, ESA e the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Ringraziamenti: A. Fabian (Institute of Astronomy, University of Cambridge, UK)

I filamenti sono degli indicatori del processo di feedback attraverso il quale viene trasferita l’energia dal buco nero supermassiccio centrale nel gas circostante. I filamenti si formano nel momento in cui il gas freddo viene trasportato dal centro della galassia attraverso bolle radio che si espandono nel gas caldo interstellare.

Ad una distanza di circa 230 milioni di anni luce, NGC 1275 è una delle galassie ellittiche giganti più vicine che si trova nel centro dell’ammasso di galassie del Perseo. La galassia è stata ripresa nel luglio-agosto 2006 con l’Advanced Camera for Survey (ACS) a bordo dell’Hubble Space Telescope.

http://www.nasa.gov/multimedia/imagegallery/image_feature_1833.html 

Loading

Buchi neri supermassivi in un processo di fusione galattica

Alcuni astronomi hanno individuato un processo di fusione galattica in atto. Ciò è avvenuto attraverso la determinazione della esatta posizione dei buchi neri di grande massa, presenti all’interno di ognuna della due galassie. Questa coppia di giganti stanno spiraleggiando uno intorno all’altro, e nel tempo di milioni di anni, alla fine si fonderanno insieme, rilasciando una gran quantità di onde gravitazionali…

Le due galassie sono note con il nome di insieme di NGC 6240, e si trovano a circa 300 milioni di anni luce dalla Terra. Sono state oggetto di recente indagine da parte del telescopio dell’osservatorio del Keck nella Hawai. Grazie al suo efficace sistema di ottiche adattive, il Keck ha potuto rilevare come queste galassie possiedano due dischi di stelle in rotazione, ognuno
dei quali ospita al suo centro un buco nero supermassivo.

Milioni di anni fa, queste erano due galassie ben distinte, che pian piano hanno cominciato ad avvicinarsi e a risentire dell’attrazione gravitazionale della compagna, iniziando così il processo destinato a portarle alla completa fusione. Tale fenomeno di evoluzione galattica è simile ai processi stessi che hanno dato origine alla nostra Via Lattea, nell’arco di miliardi di anni.

070517_ngc6240_02

L’oggetto NGC 6240 è in realtà una coppia di galassie. Crediti: C. Max, G. Canalizo, W. de Vries

La coppia di buchi neri supermassivi al momento sta pian piano cadendo verso il comune centro di gravità. Si ritiene che, in un arco di tempo che potrebbe andare da 10 a 100 milioni di anni, siano destinati a fondersi in un singolo enorme buco nero. La collisione dovrebbe rilasciare una notevole quantità di onde gravitazionali.

UC Santa Cruz Press Release

Loading

Powered by WordPress & Theme by Anders Norén